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THERMAL REGIMES OF CHEMICAL GAS-PHASE DEPOSITION 

OF CONDENSED PRODUCTS ON A MOVING SUBSTRATE 

HEATED WITH AN ELECTRIC CURRENT 

N. G. Luzhkova and Yu. M. Grigor'ev UDC 621.793.16 

A nonstationary model is constructed for gas-phase formation of coatings on a 
moving fiber heated with an electric current. 

Setups in which zonal electric heating of a moving substrate wire in a chemically ac- 
tive medium is realized are now widely employed for producing fibers from inorganic sub- 
stances by the method of chemical gas-phase deposition. In the ohmic-heating zone deposi- 
tion of condensed product on a substrate, as a result of which the transverse cross section 
of the substrate changes, occurs as a result of heterogeneous chemical transformations. The 
change in the transverse cross section of the substrate wire affects, through the electric 
resistance, both the electric power released in a given cross section of the specimen and 
the conditions of heat transfer. Thus, the case at hand the heating and deposition of con- 
densed product on the substrate are determined by a collection of interrelated factors: 
chemical reactions, electric heating, and heat emission into the surrounding medium. 

In this~paper we give a mathematical description of this process for the purpose of 
constructing an algorithm for controlling the condensation regimes when preparing continu- 
ous fibers by the method of chemical gas-phase deposition. 

I. Mathematical Model of the Deposition Process. A substrate filament with radius r 0 
is heated on the section X = 0-s with a stable electric current (I = const); the current is 
stabilized with the help of tracking devices. The filament moves with velocity U in the 
laboratory coordinate system. In the heating zone heterogeneous chemical condensation oc- 
curs on the surface of the filament; this changes the transverse size of the specimen as a 
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result of the accumulation of a layer of the product, whose electrophysical and thermophysi- 
cal properties are different from those of the substrate. It is assumed that the chemical 
condensation process is itself thermally neutral, and the intensity of heat removal from the 
side surface of the specimen is much lower than internal heat transfer (Bi << 1 - the tem- 
perature distribution over the cross section of the specimen is insignificant). 

We now derive an equation describing the heating of a moving filament as the condensed 
product settles on it. Umov's equation [1-3] is satisfied for a body with a time-dependent 
volume: 

OH 
O--t- + div (j -}- UH) ~ 1+ - -  I_. ( 1 ) 

For cylindrical symmetry, taking into account the differences between the thermophysi- 
cal characteristics of the substrate and the layer it is easy to obtain 

H = [c~9~ (rolr) z -[- c~9 z (1 - -  (ro/r)Z)] T.  ( 2 )  

Volume heating is caused by Joule heating, for which, in the case when the substrata 
and layer conduct in parallel, 

0.239 I2~r1~ 
1+ 

z~Zr2 [~l(rZ--r2o) q- ~r~l " ( 3 ) 

When the conductivity of the product is of a metallic character the temperature depen- 
dences of the resistivity of the substrate (i = I) and layer (i = 2) are determined by the 
relation o i = oi0(l + Y2T) mi. For a product with semiconductor properties a 2 = o20exp(A/T). 

Heat losses from the specimen are caused by convective and radiative heat transfer from 
the side surface (they depend on the transverse dimensions of the specimen) and conductive 
heat removal from the ends: 

I_ ----- 2o~ (r) (T - -  To) / r  -~ 2eo (T~ - -  T~)/r, ( 4 )  

where ~ = ~0(r/r0) n-1 is the coefficient of convective heat transfer, and n <- i. Substitut- 
ing Eqs. (2)-(4) into Eq. (i), we obtain the heat-conduction equation sought: 

0 c191r~+c292(r  ~ r~) T = ~  0X2 ( 5 )  
Ot r z - -  -- 

U ~ [ c19ir~ T c29~ (r 2 - -  r 2) V ] 2~z (r) (T  - -  To) - -  2sd (Tr - -  T~o) + 0,23912dl (T) 0"2 (T) 
Ox [ rZ r 2 J r r ~ZrZ [~rl (T) (r 2 - -  r~) § o2 (T) r2o] " 

The change in the transverse size of the specimen owing to chemical condensation is de- 
scribed by the expression 

Or = Ko exp ( - -  E / R T )  - -  U Or 
Ot OX ' ( 6 )  

the meaning of which is that at a fixed point the cross section of the filament changes as 
a result of both the chemical process, which is exponentially dependent on the temperature, 
and the longitudinal displacement of the specimen of variable thickness. 

It is assumed that initially the substrata is heated up to the temperature of the sur- 
rounding medium and that boundary conditions of the first kind are realized at the points 
of electric contact (-because of conductive heat removal into the massive electric contacts 
the temperature of the specimen is constant and equal to the temperature of the surrounding 
medium). The rate of the deposition process at temperature T o is insignificant. These as- 
sumptions are reflected by the following conditions: 

at t ~- 0 T - - - T o ;  ( 7 )  

at  X = 0  T = T o ,  r = r o ;  ( 8 )  

at  X = l T = T o ,  r = r(t). ( 9 )  

The system (5)-(9) makes it possible to describe the process of chemical condensation 
on a moving substrata heated with a stabilized electric current. 

For convenience in solving and analyzing the system we write it in dimensionless form. 
Introducing the dimensionless variables we transform the system (5)-(9) into the form 
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Fig. i. Nonstationary temperature profiles along the speci- 
men for different Da numbera: a) Da=10 -4 (I--T=2,86.10-7; 2 -- 3.34.10-5; 
3--- 6,67.107~; 4 - -  3,50- 10-4); b)  Da=5.10 -m (1 - -T=I0 -9 ;  2 - -  10-s; 3 - -  10-7; 
4 - -3 ,4 .10-7) ;  C) Da=~l (1--  x=2,43.10-7; 2--2,13.10-5; 3--4,25.10-~; 4 - -  6,38.10-5; 
5 - -  8,50.10 -'~) 

O0 

0,  
1 00 ez'~O 

Da 0~ [ l + c o ~ ( z  z - 1 ) l p  

6z 2 020 2(~o--  1)(1 + pO) exp(O/(1 + pO))-- 
[~ [1 + r 1)10~ z [l+c%(zZ--1)lPz 

_ ~ [(1 + pO)~ - -  1] z + I [1 + 7, (1 + po)l ~, 
[$ (1 + coc (z2- -  1)) p [ l  @ oc(z~-~ 1)] 

Oz 1 Oz 
0-~ = exp(0 / ( l  + [~0))-- Da 0 ~ '  

a t  1 : = 0  0 = 0 ,  z =  1; 

a t  ~ - - 0  0 0, z 1; 

at ~ = I  O = O .  

[1 + ao%(0) (z  2 -  l)l  

(lo) 

) 

(11) 

(12) 

( 1 3 )  

(14)  

In the case when the conductivity of the layer is of a metallic character 

%, (0) = I I + ~I ( i + ~0)V',, 
!I + ?~ (1 + ~0)],,,~ 

and  i n  t h e  c a s e  when t h e  c o n d u c t i v i t y  i s  o f  a s e m i c o n d u c t o r  c h a r a c t e r  

[1 + W (1 + ~0)]"', 
% (0) = 

exp(A/(1 + ~0)) 

The s y s t e m  ( 1 0 ) - ( 1 4 )  was  s o l v e d  on a c o m p u t e r  w i t h  t h e  h e l p  o f  an i m p l i c i t  d i f f e r e n c e  s c h e m e  
by  t h e  m e t h o d  o f  f o r w a r d  and  b a c k w a r d  s w e e p .  

2. Computational Results. Heating of the moving filament from the initial temperature 
up to its equilibrium value starts when the electric current is switched on (t = 0). The 
heating is completed when a stationary (quasistationary) distribution of the temperature 
and thickness of the layer formed in the zone of heating, which are functions of the parame- 
ters, are established. Criterional analysis of the system and the numerical calculations 
showed that three different regimes of heating of the filament are possible (see Fig. i). 
The possibility of realization of these regimes is determined by the Damkoehler number, 
which in the present case can be written in the form Da = T,/T**. 

In the limit Da + ~ (Fig. la) the motion of the specimen does not have a decisive ef- 
fect on the character of the temperature profiles in the heating zone. The effect reduces 
to the appearance of asymmetry in the temperature distribution (the temperature maximum is 
displaced relative to the center of the heating zone in the direction of motion of the speci- 
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Fig. 2. Stationary distribution of the 
thickness of product along the specimen for 
different Da numbers: Da = 10 -7 (i), 10 -3 
(2), and i0 -l (3). 

men). At all points of the heating zone the temperature increases with time and approaches 
asymptotically the stationary value. The rate of heating of the filament is determined by 
the Joule power and the resulting heat losses (primarily from the side surfaces). 

Curve 1 in Fig. 2 illustrates for the case Da + ~ the character of the distribution of 
the thickness of the film grown in the heating zone in the stationary state. 

In the other limiting case Da + 0 (Fig. ib), which corresponds to high drawing veloci- 
ties or low reaction rates, the motion of the specimen has the decisive effect on the temper- 
ature profile in the heating zone. In this case the thermal inertia of the fiber, which 
results in the appearance of a longitudinal temperature gradient (the intensity of the heat 
losses through the side boundaries is comparable to heat losses from the ends), plays an ap- 
preciable role. The distribution of the thickness of the product layer formed in the heating 
zone in the stationary state has an S shape (curve 2, Fig. 2), which is all the more distinct 
the smaller the value of Da. 

For values of Da ~ i (the characteristic drawing and reaction times are comparable), in 
contrast to the cases studied above, there arise qualitatively new regimes of heating of the 
moving filament (Fig. ic). When the electric current is switched on, initially (when the 
temperature of the filament is still low and the reaction is not significant) the specimen 
is heated according to the laws of chemically inert bodies and the temperature increases with 
time everywhere in the heating zone. The increase in temperature in turn intensifies the 
deposition process and the cross section of the specimen varies along the heating zone. Be- 
cause of the change in electric power the variation in the cross section of the specimen re- 
sults in a redistribution of temperature, as a result of which the temperature reaches a max- 
imum on the input section of the specimen while other sections cool to some stationary value 
of the temperature. Thus, here, with the exception of the input sections, the temperature 
of the specimen passes with time through a maximum and the character of the distribution of 
the film thickness along the heating zone (in the steady state) corresponds to the curve 3 in 
Fig. 2. 

The thermophysical properties of the product formed and the conditions of heat transfer 
have a significant effect on the thermal conditions of deposition. The parameter Wc, which 
in real situations falls in the range w c = 0-I0, characterizes the role of the volume heat 
capacity of the deposited layer. As one can see from the system (10)(14), the parameter w c 
affects both the rate of heating of the specimen and the longitudinal temperature gradient. 
An increase of w c (increase of the volume heat capacity of the product formed) results in an 
increase of the duration of the nonstationary stage. The effect of w c on the character of 
the temperature distribution along the specimen is more complicated. For the kinetic regime 
of deposition (Da = i) numerical calculations show (Fig. 3) that when w c increases the sta- 
tionary temperature in the heating zone decreaes; this is connected with the increase in the 
overall heat capacity of the specimen. A temperature maximum appears in the heating zone 
only for w c > I (the heat capacity of the product is higher than that of the substrate). 
The magnitude of the local heating* of the specimen &8 = ema x - est passes through a maximum 

*The temperature on the temperature plateau for the steady state regime at the point ~ = 
0.75~ was taken as the stationary value of the temperature 8st (see Fig. lb). 
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Fig. 4. Change in temperature and the effect of electric 
conductivity of the product on the rate of deposition (g = 
0.5 ~): i) metal; 2) semiconductor; 3) dielectric. 

as w c increases. This type of dependence AS(w c) is associated with the character of the 
change in the thickness of the specimen on the input sections of the heating zone. 

An increase in heat losses from the side surfaces of the filament also results in an 
extremal dependence of the nonuniform heating along the specimen (Fig. 3). This is a con- 
sequence of the temperature dependence of the coefficient of convective heat transfer. 

The character of the distribution of the temperature and the thickness of the film 
formed on the heated section of the substrate are closely related with the electric conduc- 
tivity of the reaction products. When the electric current is stabilized the variation of 
the Joule heating along the specimen is determined by the character of the change of the re- 
sistivity of the specimen. Accordingly, here we can study three cases: metallic, semicon- 
ductor, and dielectric films. 

It is well known that semiconductors are characterized by electric conductivities fall- 
ing between the values for metals (i0~-i0 4 ~-i'cm-i) and good dielectrics (10-1~ -12 ~-i. 
cm -i at room temperature). A characteristic feature of semiconductors, which distinguishes 
them from metals, is that the electric conductivity increases with temperature, and as a 
rule the increase in exponential in a quite wide range of temperatures. As the temperature 
increases the electron density in the conduction band increases and with the same current 
strength the time dependence of the rate of growth of the film will be different for metallic, 
films (Fig. 4). The film will grow at the slowest rate in the case of dielectrics, because 
their resistivity is high and the specimen will be heated to a lower temperature. Metals 
are heated significantly more strongly with the same current strength and drawing velocity, 
and because of the extremal dependence of 8($) here the rate of growth of the film also pas- 
ses through a maximum. Initially the behavior of semiconductor films is identical to that 
of dielectric films. With time, once a quite high temperature is reached, the rate of growth 
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of the film increases and the stationary (quasistationary) rate of growth of the film becomes 
close to the rate in the case of metals (Fig. 4). 

Thus under conditions of heterophase condensation on a moving substrate heated with an 
electric current there appear a number of effects that must be taken into account when de- 
scribing the regimes of reactions of practical importance. The assumption that there is no 
transverse distribution of the temperature is not strict, but in real situations it can ap- 
parently be used for sufficiently thin substrates. Thus in the case when compounds of the 
type Si3N 4 and SiC are deposited on a 10-pm-in-diameter substrate with a = 10 -2 cal/(cm 2" 
sec'deg) Bi ~ 10 -2 for a ten-fold increase of the initial diameter of the specimen, i.e., it 
can be assumed that there is no transverse temperature gradient in the process. 

NOTATION 

Here the dimensional variables are: the time t, the longitudinal coordinate x, the 
velocity of the filament U; Bi, Blot's number; H, specific enthalpy; j, conductive heat 
flux; I+, rate of volume heating; I_, rate of volume heat absorption; c i and Pi, specific 
heat capacity and density of the substrate (i = I) and layer (i = 2); oi, resistivity; p, 
outer radius of the specimen; r 0, radius of the substrate filament; I, current strength; 
s, emissivity of the specimen; o, Stefan-Boltzmann constant; a, coefficient of convective 
heat transfer; ~, effective thermal conductivity of the specimen; E, activation energy; K0, 
preexponential factor; To, temperature of the surrounding medium; T, temperature of the 
deposited specimen; R, universal gas constant; ~, length of the zone of electric heating. 
Dimensionless variables: e = E/(RT~)(T - To), is the temperature; �9 =K0exp(-E/RT0)/r 0 is the 
time; ~ = X/r 0 is the longitudinal coordinate; z = r/r0 is the transverse size of the film; 
Da = K0exp(-E/RT0)/U, is Damkoehler's number; ~... = r0/U, is the characteristic draw- 
ing time; ~** = r0/(K 0 exp(-E/RT0)], is the reaction time; and, mc = c2P2/(c~Pl), is the 
ratio of the volume heat capacity of the product to the volume heat capacity of the sub- 
strate. 

i. 
2. 

. 
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